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It has been observed that standing surface waves in water may be excited by 
acoustic fields of very much higher frequency. No special relationship between 
the two frequencies appears to be required, but there is such a relationship 
between the spatial variations of the acoustic and surface wave modes. Another 
requirement is that the lower frequency should be comparable with the resonant 
bandwidth of the acoustic response of the system. An explanation of such 
phenomena is proposed and is tested on a somewhat idealized model by the use 
of techniques which could be extended to deal with more realistic situations. The 
model serves to explain qualitatively the available experimental observations. 
It is suggested that the phenomenon of spatial resonance is not confined to the 
interaction between water waves and acoustic fields, but may occur generally in 
systems having modes with related spatial patterns but greatly different 
frequencies. 

1. Introduction 
The authors have become aware of two examples where acoustic fields serve 

to generate standing surface waves of large amplitude in water. These waves 
have frequencies lower by about two orders of magnitude than that of the 
acoustic field driving them. In some experiments conducted a t  Oxford University 
by Dr R.E. Franklin and described to the authors by Dr J. Ockenden a glass 
cylinder was mounted with its axis horizontal and partially filled with water. 
Under certain circumstances, when the air in the cylinder was excited in a natural 
organ-pipe mode, standing waves of small wave-number were excited in the 
water. An apparently similar phenomenon was observed by Huntley (1972) in the 
course of experiments which involved the excitation of a beaker of water in its 
natural bell modes. Here too, large'amplitude waves of very much lower frequency 
were observed to be generated. Waves with various mode patterns could occur 
and some of these could be maintained indefinitely. Moreover, different surface 
wave patterns could be generated by exciting higher order bell modes. 

It might be considered that these were examples of parametric resonance but 
this explanation appears to be ruled out for two reasons. First, the phenomena 
are not sensitive to the frequency ratio of the two natural modes. In  the Oxford 
experiment no care has to be taken in the selection of the depth of water, which 

t On leave from the Department of Mathematics, University of Western Australia. 
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affects the frequency of the water waves. Likewise, in Huntley’s experiments the 
properties ofthe beaker, and hence the frequency of the bell mode, did not appear 
to be in any way critical. Second, parametric resonance over such a large 
frequency ratio, and for relatively small driving amplitudes, would involve 
extremely slow growth rates in the absence of dissipation. For the systems under 
consideration it is inconceivable that these growth rates could overcome the 
natural damping of the surface waves. Thus parametric resonance does not 
appear to be a likely explanation. It seems that both these phenomena must be 
explained in terms of resonant nonlinear coupling, of a form that so far does not 
appear to have been described in the literature. 

The following mechanism is suggested as the explanation of such phenomena 
and its investigation is the object of this paper. Because the acoustic field is 
driven at an angular frequency w close to resonance for a particular mode, whose 
spatial variation over the water surface is described by X ( x ) ,  this mode may be 
expected to dominate the acoustic field. Further, let there be present a small 
amount of a standing surface wave whose spatial variation over the surface is 
given by Y ( x )  eid.  For the mechanism under consideration it is necessary that 
[X(s)I2, when expanded in a modal decomposition, has a significant amount of 
the mode Y ( x )  and that X ( x )  Y ( x )  has a significant amount of the mode X ( x ) .  
These are certainly justified assumptions for Huntley’s experiments but whether 
this is so for the Oxford configuration is not known to us. The acoustic field drives 
a surface wave field of the form X ( x )  eiwt, but this is of quite small amplitude 
because its frequency is so much greater than the natural frequency of standing 
waves with the modal form X ( x ) .  The nonlinear surface conditions couple the 
two standing waves, so that very small amounts of the modes X(x) ei(w*u)t appear 
in the surface displacement. This is a direct consequence of the assumption about 
the modal decomposition of X Y .  Now if at least one value of w & v lies within the 
resonant bandwidth of the acoustic mode X(x) the acoustic field will contain the 
modal response X(x) ei(w*‘)t. Moreover, the resonant amplification of the surface 
displacement at one or both of these frequencies may compensate for the very 
small surface response of the type X ( x )  ei(o*u)t. Nonlinear coupling between the 
acoustic modes X ( x )  e i W t  and X ( x )  ei(o*u)t, and the assumption about the modal 
decomposition of X 2 ,  imply a very small forcing of the form Y(x) eid on the water 
surface. However, this is a natural mode of the surface wave system, so there is 
a greatly enhanced response to  such forcing. This may be seen to complete a 
cycle, in that the presence of some surface wave mode may lead to the generation 
of the same mode through interaction with the acoustic field. Thus there is 
a potentiality for instability, but to confirm the instability it is necessary to show 
that the phase relationships are appropriate for a significant energy feed into the 
standing surface waves. There are certain features of Huntley’s observations 
which suggest that the above explanation is correct. First, all the surface wave 
modes he has observed for a variety of modal shapes excited in the acoustic field 
are consistent with the assumed properties of X 2  and X Y .  Huntley has also 
observed that when the surface waves are established the acoustic response may 
beat with angular frequency IT or 2v. This may be explained by assuming the 
presence of one or both of the angular frequencies w & IT. 
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Under these circumstances a detailed investigation of this possible spatial- 
resonance interaction is justified, but the complexity of any calculation is rather 
daunting. It may be noted that as many as four modes may contribute to the 
significant part of the calculations and that each of these must be considered in 
both the acoustic and surface wave fields. Moreover, the mechanism envisaged 
involves the enhancement of certain very small terms by large resonant amplifi- 
cation. This happens in both the acoustic and surface wave fields and hence great 
care must be taken to obtain certain critical terms to  a high order of accuracy. 
Huntley’s configuration seems to offer the better opportunities for accurate 
experimental investigation but it is rather unattractive €or a preliminary theo- 
retical investigation of the proposed mechanism. As a first stage it seemed appro- 
priate to investigate a model with simple eigenfunctions, which does not involve 
the coupling between the water and the elastic vibrations of the containing 
vessel. Nevertheless, it was intended that, if the pattern of calculation proved 
successful the analysis would eventually be extended so that a direct comparison 
could be made between theory and experiment. Thus although the model chosen 
is rather close to the Oxford experiments, the calculations have been developed 
with an eye on Huntley’s configuration. 

The configuration chosen for theoretical investigation is a rectangular organ 
pipe filled with water of sufficient depth for it to be effectively infinite for standing 
surface waves of the wavelength under consideration. Moreover, it  will be 
assumed that the flow field is two-dimensional. Even this simplified model 
problem has a host of small parameters, some of which are sufficiently different 
in size to make it extremely difficult to work ab initio on any soundly based 
hierarchy of scales. This rapidly becomes apparent once calculations start, because 
a variety of products and quotients of small parameters arise. Thus some rationale 
has to be settled for dealing with small parameters such as the dimensionless 
numbers measuring the importanceof nonlinear effects in the acoustic and surface 
wave fields: the small dissipation parameters (different in order of magnitude for 
the two fields), the ratio of the frequency of surface waves to that of the driving 
acoustic field, the ratio of the density of air to that of water, and the relative de- 
parture of the driving frequency from acoustic resonance conditions. Our aim 
has been to retain the largest term with any specified physical effect. In making 
this assessment we have been guided by the results for Huntley’s experiments. 

In  particular, it will be assumed that the acoustic response at  resonance is 
limited by dissipation rather than nonlinear detuning. It is highly probable that 
in Huntley’s experiments the displacements of the container are small enough to 
be considered as infinitesimal. However, the situation with regard to the Oxford 
experiments is not so clear. Chester (1964) has shown that nonlinear effects can 
be extremely important in organ-pipe modes, fundamentally because sound 
waves are not dispersive. However, as is shown in the later analysis, the presence 
of the water surface introduces a small dispersive element into the acoustic field 
so that the relevance of Chester’s shock formation mechanism is not clear. It 
might be added that if the acoustic resonance is in fact limited by nonlinear, 
rather than dissipative, effects the present theory could be modified but the 
analysis would be much more complex (see appendix). 

13-2 
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In  the model calculation the dissipations will be introduced through empirical 
factors. In  a confined region dissipation in the acoustic field will be largely due to 
losses in the boundary layers; such losses usually produce attenuation rates and 
frequency shifts of the same small order. To include both effects in the analysis 
would add tremendously to the difficulty of the calculations. The following 
scheme is proposed to avoid this in a way which permits an empirical adjustment 
for comparison with experiment. The acoustic field will be assumed to satisfy the 
wave equation modified by the addition of a linear term in the first time deriva- 
tive. The small coefficient multiplying this term will be chosen so that the 
modified equation predicts the experimentally observed decay rate for the mode 
which is acoustically resonant. Such an equation will not describe the decay of 
other modes correctly, but this is unimportant for in the calculations of the 
acoustic field it is only in the equation for the resonant mode that any such small 
terms play a significant role. The frequency shift will be included in the eventual 
analysis by making the observed frequency of maximum response correct. Such 
a correction needs to be made only if one is concerned with the exact position on 
the frequency scale of the resonance phenomena. Similarly, an artificial damping 
will be introduced into the surface wave calculations so as to give the correct 
decay rate for the observed standing wave. Because the calculations are not 
sensitive to the frequency of this standing wave, no effort has been made to 
include any small frequency shift. 

In  any actual problem in which theory is to be compared with experiment it 
would be possible to introduce a soundly based system of approximations in 
which the assessment of relative sizes could be made rationally. It may be that 
certain terms which we have neglected are important in some circumstances, 
but every endeavour has been made to retain significant terms. From the 
pattern established by the present calculation, it will be much easier to make 
an assessment of how significant different types of terms will be in any calcula- 
tion concerning an experimental configuration. It is an interesting feature of the 
calculations that the properties of the model system under investigation do not 
play a significant role in the explanation of the instability mechanism, or in the 
determination of the ultimate state which develops. Prom the form of the 
mathematics it can be seen that similar phenomena might be expected in many 
weakly nonlinear systems with geometrically related modes but greatly differing 
frequencies. 

2. Acoustic field 
Here we consider the behaviour of an acoustic field driven at a nearly resonant 

frequency at one boundary, while another of its boundaries moves in a certain 
prescribed way which will later be identified with the motion of the water surface. 
Consider a horizontal column of air of density pa, length I and depth d, driven at 
one vertical end by a periodic motion of angular frequency w. Let the x axis be 
taken along the column and the x axis vertically upwards with its origin in the 
undisturbed water surface. Let the disturbed water surface be denoted by c(x, t ) ,  
the velocity potential by @(x, z, t )  and the pressure by p(x ,  x ,  t ) ,  where t is time. 



A model for spatial-resonance phenomena 197 

Then, as explained earlier, the acoustic field will be assumed to be describable 

C 2 V W  = + 2YOt, (1) 
by 

where c is the sound speed in the undisturbed air and Y is the observed 
(logarithmic) decay rate of free acoustic waves in the resonant mode. The 
boundary conditions will be imposed in the form 

@z+@zzC= Ct++zCz on z = 0, (2) 
which is the kinematic surface condition correct to second order in the surface 
displacement, and 

QZ= 0 on x = d ,  
@ ‘ , = O  on x = l ,  

= {Aeiwt + *} on x = 0, 

where A is the (very small) driving amplitude and * denotes the complex con- 
jugate of all terms written explicitly within the bracket. Some objection may be 
raised to combining the linearized equation ( 1) with the second-order boundary 
condition (2). The reason for this form of approximation is as follows. The only 
second-order terms which are significant in this part of the calculation are the 
acoustically resonant terms, which have a large response to small drive. The 
biggest such terms come from products of the large acoustically resonant mode 
with the large surface displacement in the surface wave mode, i.e. the terms 
retained in (2). The nonlinear terms in the field equation would yield terms of the 
same form but significantly smaller, since the acoustic response in the surface 
wave mode is very much reduced because of the small frequency ratio. 

It will be assumed that the driving frequency is close to the resonance fre- 
quency of thenatural mode, whichisz-independent andvarieswithxas cos (mrx/Z). 
Further, it  is assumed that no other acoustic mode is nearly resonant at this 
frequency, so that the acoustic field will be predominantly in the resonant mode. 
The square of this spatial dependence is thus dominated by x-independent modes 
and a cos(2mx/l) dependence on the surface. By our original argument about 
X ( x )  and Y ( x ) ,  surface waves generated must involve cos(2mx/Z), since an 
x-independent heaving of the water surface is incompatible with conservation of 
mass. Thus, for the possible mechanism described in the introduction, it suffices 
to consider the acoustic field in the form 

Q, = cos (mrx/Z) {ao eiot + @+ ei(u+r)t + @- ei(W-u)t + *} 
+ cos (2mrxlZ) (Y eid + *} + a’, (3) 

where a’ includes all other modes which are unrelated to a mode which is near 
resonant in either the acoustic or surface wave field. The various W s  and Y must 
be considered as complex to allow for as yet undetermined phase differences. 
Further, they must be regarded as slowly varying functions of time, since we are 
interested in energy transfers between the various modes. No assumption is made 
about the relative sizes of the driven mode @, and the system generated modes 
@+, @- and Y since we wish to compute the final configuration as well as explain 
the instability. It is perhaps worth repeating that the explicit 0’s may be 
expected to be large in comparison with Y because they are the resonant modes 
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in the acoustic system while the Y ,  driven by a relatively large surface displace- 
ment, has too small a frequency to be significantly generated in the acoustic field. 
Throughout the analysis it will be assumed that W, which is nowhere resonant 
and hence small, will not contribute significantly to any nonlinear interaction.? 
Moreover, its linear response is of little interest so that such terms will be ignored 
in the subsequent calculation. A similar argument suggests writing the surface 
displacement of the water in the form 

5 = cos (mm/Z) {co eiut + C+ ei(u+gfi + 6 - ei(u-u)t + *} 
+ cos (2mn@) {yeid + *} + 5’. (4) 

In  this case it is the y term which is expected to be relatively large, since the other 
terms are driven by acoustic pressure fields of frequencies far removed from the 
gravity wave resonance. 

The calculational procedure envisaged is the substitution of a Fourier 
decomposition m 

0 = cos (km/Z)  COB (nnxld) (Dkn(t) 
k,n=0 

into the damped wave equation (1). Because the boundary conditions on x = 0 
and x = 0 are not consistent withthis formof expansion, V2@ is not given correctly 
by formally differentiating the Fourier decomposition. This may be corrected 
by a method described in Jeffreys & Jeffreys (1962, p. 441). Alternatively, use 
may be made of finite Fourier transforms. By either methodit may be shown that 

m 

v20 = - {(kn/Z)2+ (nn/d)z} cos (hx /Z)  cos (nnzld) QIzn 
k ,  n=O 

- 2Z-1[@J,=o- d-l[@,],,O + R‘, (5) 

where R’ denotes terms which are identically zero for the modes n = 0 and 
Ic = m or 2m, which are the only modes for which detailed calculations are to be 
made. Equation (1) for the damped acoustic field may now be applied to yield 
equations for the temporal variations of 0 and Y?. Consider first the equation 
for Y.  Since Y? is much smaller than the other terms in the acoustic field, the even 
smaller terms such as Yt and vY will be neglected. This is the justification for 
using the one damping coefficient for all frequencies, because it is only in one 
narrow frequency band that the damping contributes significantly to the 
calculations. Thus one obtains as a reasonable approximation 

Y = - - i c r ~ / d ( 2 r n ~ / Z ) ~  (6) 

for the relative small acoustic response in this mode. 
The calculations for the three nearly resonant terms have to be made rather 

more carefully, because of the amplified response to small driving terms. For 
such terms we make the approximation 

t In Chester’s (1964) theory of the organ pipe the higher harmonics are also natural 
modes of the system, since the wave equation is non-dispersive, and this assumption does 
not apply (see appendix). 
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where terms such as vQot and Qott have been dropped in comparison with iwQot. 
It will be seen later that small phase changes are unlikely to alter the essential 
features of the predictions, so that these seem reasonable approximations. Then, 
combining (i), (3), (4), (5) and (7) leads to the equation 

aOt + v@., + &kr1{w2- (mnc/Z)2} a0 + $c2d-lc0 

= ic21-lw-1A + +i(cmn/Z)2 (dw)-l (Q+q* + @ - q) (8a) 

for the driven mode. In  this arrangement every term is small because the fact 
that w is close to the resonant frequency of the mode makes the last term on the 
left-hand side small. Almost identical equations are similarly obtained for the 
side-band near-resonant modes. These are 

where in all but the one large term the differences between w and w + cr have been 
neglected. It is for the same reason that the slight variation of the damping with 
frequency within the resonant bandwidth has been neglected in forming 
equation (1).  

3. Surface-wave field 
In  this section the response of the water surface to the acoustic pressure will 

be calculated. For the irrotational homentropic motion of the air, Bernoulli’s 
equation gives 

where V denotes the potential of the conservative external force field. It can be 
shown, therefore, that the pressure ps on the surface is given, correct to second 
order in small quantities, by 

where all derivatives of Q are to be evaluated on x = 0, pa denotes the density 
of air and y the adiabatic index. The expansions (3) and (4) are to be substituted 
into this equation, and once again only certain second-order terms are retained. 
This expression for the pressure is to be used to calculate the response of the water, 
so that now the only second-order terms retained are those of angular frequency cr 
and spatial variation cos (2mnx/Z) on the pressure. Again only the biggest terms of 
a given form are retained, so that, to sufficient accuracy, the surface pressure may 
be represented by 

ps  = -pa COB (mnx/Z) [iwQoeiot + iwQ+ei(w*)t + iwQ-e~(o-~) t  + *] -pa cos (2mnxlZ) 
x(e~”t[icrY~gq-$((mn/Z)~-(y-  l ) w 2 / ( y ~ 2 ) ) ( @ O Q ~ + @ ~ ~ + ) ] +  *>. ( 9 )  
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Note that terms like Qog? are indeed small in comparison with the nonlinear 
terms retained, as would be contributions from second-order terms in the 
acoustic field equations. 

Let $ denote the velocity potential of the irrotational flow in the water. Then 
$ may be represented in the form 

$ = emnz/l cos (mnx/J) {$oe*ut + $ i- eW+r)t + $ - ei(+r)t + #} 
+ e2mffZn cos (2mnx/Z) ($ eiut + *} + $’, 

where the notation is similar to that employed for the acoustic field. The surface 
boundary conditions to be satisfied on z = 0 by this velocity potential are, 
correct to second order, 

$ B + $ B Z C  = Ct+dzCz’,, 

P(9t +sY+ 4($: + $3 + $tBC}+Ps = 0, 

where the surface pressure is given by (9). For the modes which are acoustically 
resonant, and hence little excited in the surface waves, the linear approximations 
alone suffice. Thus, to an approximation consistent with the procedure we have 
followed, it is easy to show that 

and 

where this notation implies that the equations apply to all three frequencies. 
For the resonant standing waves in the water, a better approximation 

retaining second-order terms is used, but once again only the largest second- 
order terms of a given form are kept. As far as the resonant surface wave is 
concerned, the kinematic surface condition is sufficiently well approximated by 

(2mn/Z) @ = i q  +qt, ( 1 1 4  

since equations (10) imply that the second-order terms neglected here are esti- 
mated in size by (pu/p)2OO@?, typically, and these are small in comparison with 
other terms arising in the complete treatment of the surface boundary condition. 
The dynamic boundary condition on the surface yields 

w11. + 11.t) + 911 = (Pulp) (ivy + sr - i”nm2 - W 2 ( Y  - 1)lrc21 ( @ o  QE + @.o* @+)I, 
(1lb)  

and 11. may be eliminated from (11). Thus one obtains 

r t  + Bia-l{v2 - 2mng/i) (1 -P&) r - (Pu/P) (mnll) y 
= +icr-l(p,/p) (mn/Z) ((rnn/Z)z-w2(y- 1) /y9}  ((Do@: + @>o* Q-). (12 )  

Equations (6), (8), (10) and (12 )  may now be combined into a set of ordinary 
differential equations : 

<Do, + v@, + @0-~{w2- (mnc/Z)2 - (pa/p)c2d-l(rnn/Z)) Qo 

= i ~ ~ Z - l w - ~ A  + ii(cmn/Z)2 d-lw-l(@+T* + Q-q), ( 1 3 4  

@+t + Y@+ + @w-l{(w + @2 - ( m ~ c / Z ) ~  - (p,/p) c2d-l(mn/I)} a+ 
= +i(cmn/1)2 d-lw-1Q 07, (13 b)  
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0, + v@- + +iw-'{(w - a)%- (mrc/Z)2 - (pa/p)c2d-l(m7r/Z)} @- 

qt + v'q + +ia-l(a2 - (2mng/Z) (1 -pa/p) + (pa/p) gd-l}q + ia(mn/l)2q*qa 

= +i(cmn/Z)2 d-lo-W,q*, (13 c )  

= &s' (~ , /P)  (mn/Z) { ( ~ T / E ) ~  - 02(y - 1)/yc2} (@o @? + @,* @+), (13 d )  
where two additional terms have been included in the last equation. The first of 
these, v'q, is to represent the damping of the surface waves, and it is intended 
that the value of v' should be obtained from the experimentally determined decay 
rate of a pure standing wave of this modal shape. The second term added is the 
last term on the left-hand side and has been included because experiments sug- 
gest that the surface waves generated are far from small in amplitude. The actual 
value of the coefficient is taken from the calculations for a standing wave by 
Tadjbakhsh & Keller (1960). The inclusion of such a term will not affect the 
explanation of the instability mechanism leading to the formation of the standing 
waves but it may be of significance in computing the field after the instability 
has developed. 

It may also be observed from (13a)  that even if the surface wave does not 
develop, i.e. q = 0, there is an additional term (p,/p)c2d-l(mm/Z) due to the 
presence of the water surface. As this term is only linear in m, which is a measure 
of the wavenumber, the acoustic field will be slightly dispersive. As it is likely 
that this small dispersion is rather larger than that due to viscous and nonlinear 
effects, there is a smaller probability that the shock formation discussed by 
Chester (1964) will be important, even for strong acoustic fields. 

4. Instability theory 
Equations (13) have been derived for an idealized model situation, but here- 

after we shall consider more general equations of a rather similar form which, it 
will be shown, may be expected to apply to a broader class of problems. The 
equations which will be considered are 

(14a) QOt + v@,+ iAQo = B + i(ct*@+q* +a@-q), 

T t +  V ' q  +i(6+ K q q * ) q  = ip(@,@.*_ + @: a+), ( 1 4 4  

where A is the difference between the driving frequency and the natural frequency 
of the acoustic field, 6 is the frequency difference of the low frequency waves 
generated from the natural frequency of the standing waves, K is the coefficient 
of nonlinear frequency shift and a and p are complex interaction coefficients. 
Equations (14), with a and p real and positive, reduce to equations (13), except 
that (13c) is replaced by its complex conjugate. Moreover, (14) should apply to 
a much broader class of problems. Essentially what is needed is two classes of 
waves whose frequency ratio is large, with mode shapes satisfying the prescrip- 
tion discussed in the introduction and such that there is a quadratic coupling 
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between the modes. All such systems would have equations of the same form 
as (14), save that the coupling coefficients in the first three equations might not 
be so simply related. 

However, we argue that the relationships between the coefficients in the 
proposed equations (14) characterize a broad class of modal interactions. From 
recognition of the fact that the manner in which a-7 contributes to the equation 
for is identical with that in which Qo7 contributes to the equation for @+, it 
follows that the interaction coefficient in (14b) is the same as the second inter- 
action coefficient in ( 1 4 4 .  Similarly the interaction coefficient in (14c) must be 
the complex conjugate of the first interaction coefficient in (14a). These identifi- 
cations are general for any system. Now the derivation of the interaction coeffi- 
cientsinvolves performing linear operations onX(x) @ k ei(w*u)t and Y(x) 7 eid, and 
then picking out the coefficients of certain products. As the only operation which 
does not produce a real coefficient is ateit, it follows that the contribution 
associated with any @ to the interaction coefficient will be real for all problems 
in which the quadratic interaction terms do not contain an odd-order derivative 
of the high frequency field with respect to time. This is a reasonably broad class of 
interactions for which the interaction coefficient associated with 7" must be the 
complex conjugate of that associated with 7. Even if this condition is not met 
there are additional reasons for supposing that the relation implied in ( 1 4 4  must 
hold. First, if the coupling coefficients are not complex conjugates then we are 
faced with the remarkable situation in which spatial resonance could act in 
reverse, and a sufficiently strong low Frequency field would drive a high frequency 
response. Second, equations (14) yield simple results, whereas allowing the one 
additional variation in the interaction coefficients leads to a lengthy catalogue of 
results for different relationships between the numerous coefficients. 

In  order to explain the onset of the instability, it suffices to note that if the 
system were started from a state of near rest the quadratic terms would initially 
be unimportant; (14a) then implies that the system would tend to a state in which 

a0 = B/(v+iA).  (15) 
With this approximation for (Do the remaining three equations become coupled 
linear constant-coefficient equations for @+, (D- and 7. Solutions with time 
dependence e i s t  may be sought; this leads to the characteristic equation 

( ( s + c r - i ~ ) ~ - A ~ ) ( ~ + ~ - i i y ' ) + 2 a p A ( D ~ @ , *  = 0. (16) 

Without the restrictive assumption made on the interaction coefficients in ( i4a)  
there would be an additional term involving s(Do@,* and general conclusions are 
hard to draw. The system under investigation will be stable if all roots of the cubic 
equation (16) have positive imaginary parts and unstable if there is at least one 
root with a negative imaginary part. For small enough values of (Do @$, the roots 
of equation ( i 6 )  will be close to the values - 6+ iv' and + A - r~ + iv, and hence 
no development of the surface waves is to be expected. On the other hand, for 
large values of (Do@$,  non-zero values of A, tc and p, and moderate values of 
cr, v, A, 6' and v', the roots of equation (16) lie close to those of 

s3 = - 2@A@O@$. 



A model for spatial-resonance phenomena 203 

Irrespective of the phases of a and p or the sign of A, such a system must be 
unstable, because at least one, and possibly two, of the roots must have a negative 
imaginary part. Thus the system is unstable and the low frequency mode is 
amplified, for strong enough forcing close enough to, but not exactly at, the 
high frequency resonance. 

The curve of neutral stability (i.e. the graph of the relation between A and IBI 
separating the regions of stability and instability) is of considerable importance. 
This curve has two branches whose algebraic descriptions are greatly simplified 
when v' and 6 are very small in comparison with both v and g. It will generally be 
the case that the high frequency field will be much more rapidly attenuated than 
the low frequency field. Further, the low frequency field is expected to be gene- 
rated at a frequency relatively close to its resonance frequency. So such assump- 
tions seem reasonable. Then it may be shown that, where for simplicity we have 
reverted to the case of equations (13) in which ap is real and positive, for A < 0 
there is one branch of the marginal stability curve given by 

[B12 = - +g(A2 + v2))"/a/3A, 

IBI2 = $(u'/v) (Az + v2) [(A2 + v2 - C T ~ ) ~  + 4v2a2]/~/3Ag. 

(17 a )  

while for A > 0 there is another branch given by 

(17 b )  

The phenomenon is not to be expected unless w 5 g is within the resonance band- 
width, of which v is a measure, so that the factor v'/v implies that an instability 
with A > 0 can be excited for much smaller forcing of the acoustic field than an 
instability with A < 0. It must be stressed that this result is a consequence of the 
assumption that ap is positive and is not a general property of equations (14). 
Sketches of the neutral-stability curves are shown in figure 1. 

In  Huntley's experiments the instability has only been observed when the 
acoustic system is driven at  a frequency greater than the resonant frequency. 
His preliminary neutral-stability curves show a striking qualitative resemblance 
to the theoretical curve described by (17b).  The quantitative agreement is also 
good once a suitable factor ap is chosen. With this value of ap, the minimum 
value of IBI necessary to drive the instability at frequencies below resonance 
conditions may be calculated from (17a).  This has been found to be well beyond 
the capacity of the vibrator that Huntley has been using. However, in so far as 
a comparison can reasonably be made it looks as if the instability mechanism 
examined in this paper is exemplified by the phenomenon investigated by 
Huntley. 

For circumstances under which instability does occur, equations (14) provide 
a basis for determining the style of motion which develops. Physically, it is likely 
that the system will either tend to some form of limit cycle or, alternatively, tend 
to a state in which the amplitudes in the modes involved become constant in time. 
In  Huntley's experiments it is the second possibility which is observed to occur. 
I f  one assumes that the equations (14) admit a solution which becomes indepen- 
dent of time, then they provide a set of nonlinear equations for such a state. If 
@+ and a- are eliminated by the use of (14b) and (14c), and the imaginary part 
is taken of the transformed equation (14d), it may be shown that a steady 



204 J .  J .  Mahony and R.  Smith 

Below resonance Above resonance 

amplitude response is only possible for driving frequencies above resonance. 
The response in the driven mode, if there is an instability in the surface wave 
mode, is given by 

Q0 = (v'/v) {4y2g2 + (A2 + v2 - ~ ~ ) ) " ] / 4 a p ~ A .  (18) 

A comparison of this with (15 )  and (17b)  shows that, at a given driving frequency, 
as the driving amplitude B is increased the response in the driven mode increases 
until the limit of stability is reached and thereafter remains constant. The effect 
of further increasing B is merely to increase the energy in the surface waves and 
side-band modes. The real part of the transformed equation ( 1 4 4  yields 

6+ ~77" = +(v'/v) (A2 + V' - g2) g-', (19) 

which gives a partial determination of the frequency shift of the standing surface 
waves. Elimination of a+ and 0- yields the further complex equation 

(20) a0{i + 2a277*[(v + iA)' + a2]-1} = B/(v +iA). 

Equations (18), (19) and (20) suffice to determine the amplitude of the surface 
wave, the frequency shift and the phase in the driven mode relative to the drive. 
One should not expect to be able to determine the phase of the surface displace- 
ment as this is related to the initial disturbance. However, apart from this, the 
amplitudes of the side-band modes can be calculated from the steady forms of 
(14b)  and (14c ) .  Thus a satisfactory theory may be considered to have been 
developed for the more easily excited branch of the neutral-stability curve. It is 
possible that even in these circumstances other limiting solutions exist, but there 
is no evidence from Huntley's experiments that this is so. It may be noted that 
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many of the parameters, such as v, v' and the resonant frequencies, can be 
measured experimentally. Thus when spatial resonance is observed in circum- 
stances where the theoretical calculations are not feasible, parameters measured 
from the neutral-stability curve may permit the determination of the interaction 
coefficients for the appropriate form of equations (14). The equilibrium theory 
then provides sufficient measurable quantities to permit a very stringent testing 
of its validity. 

When one examines the structure of the calculations in $52, 3 and 4, it  is 
apparent that very little is dependent on the detailed physics of the situation. 
Equations of the form of (14) are to be expected in any closed system with weakly 
quadratic coupling in which there are two spatially similar waves with greatly 
different resonance frequencies. It is of interest to note that if the resonant 
bandwidth of the higher frequency mode is too narrow this form of instability 
cannot occur. In fact, the greater the damping in this mode the more likely it is 
that such an instability mechanism can occur. In  view of these remarks it is 
interesting to speculate whether other examples of this spatial resonance may 
have been observed. 

One possibility is reported in a paper by Ames, Lee & Zaiser (1968) on the 
ballooning of a travelling thread-line. Much of their work is concerned with condi- 
tions under which transverse vibrations are generated by longitudinal forcing, 
but the frequency ratio is not large. Under these conditions ballooning is an 
example of parametric resonance. However these authors commented briefly 
that, when the tension in the string is small (and hence the ratio of frequencies is 
large), a rather different form of ballooning is observed. In these circumstances 
the ballooning is in a mode with doubled wavenumber, and it might be that the 
different behaviour is associated with spatial resonance. Certainly, the coupling 
between longitudinal and transverse vibrations of a string is described by equa- 
tions for which the general conditions for possible spatial resonance can be met 
for small initial strains. Another coupling which might exhibit spatial resonance 
is that between surface waves and the much slower internal waves in a closed 
region, but we know of no experimental observations. It is just possible that there 
are conditions under which a seiche may generate internal waves. 

The authors would like to thank Dr Franklin and Dr Ockenden at Oxford and 
Mr Huntley and Professor T. B. Benjamin at Essex for drawing our attention to 
the phenomenon. One of us (J. J. M.) also wishes to express his gratitude to the 
University of Essex for its hospitality and support under an S.R.C. grant. 

Appendix 
At several points in the above discussion doubts were expressed as to whether 

the acoustic waves in the Oxford experiments could be described accurately by 
a linear theory. The sound field according to linear theory, having the 
form cos(m~x/Z)e~~,  interacts with itself to drive a mode of the form 
cos (2mnxlZ) eZzot; if 2w is within the resonant bandwidth of this mode, then the 
sound field will contain a significant amount of the second harmonic. Likewise, 
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the first and second harmonics interact to drive the third harmonic, and so on. 
For the model problem studied above, if the original sound field is driven at a 
frequency A above resonance then the nth harmonic is at a frequency 

nA + (n - 1) (PalP) ( C P )  

above its resonant frequency, and for typical laboratory scales this is beyond the 
resonant bandwidth. As the water depth is reduced, however, the sound waves 
become less dispersive and if the water is sufficiently shallow the nth harmonic is 
at a frequency only nA above itsresonancevalue, so that therewill be a significant 
amount of the higher harmonics present in the sound field. Here we outline how 
the calculations on the onset of instability could be modified to allow for the 
presence of strong harmonics in the basic sound field. A calculation of the final 
state would require extremely complicated mathematics, presumably akin to 
what was developed by Chester (1964). 

We assume that the most unstable water wave mode has the spatial structure 
cos (2rnnxl.4) and by analogy with the preceding calculations we define A as the 
difference between the actual and natural frequencies of the cos (mnx/Z) contribu- 
tion to the basic sound field. For the onset of instability, we can regard the basic 
sound field as being steady, and we need to derive equations that govern the slow 
evolution in time of 7, the amplitude of the water wave, and the amplitudes @+ 
and @- of the side-band sound waves with spatial structures cos(mnx/Z) and 
frequencies respectively A + cr and A - above the natural frequency. The 
methods of 3 2 and 3 are still applicable and the final equations are basically of 
the form (14b-d), with extra quadratic terms which reflect the presence of strong 
higher harmonics in the basic sound field. By seeking the possible quadratic forms 
that yield the correct spatial and temporal periodicities, we conclude that the 
appropriate modification of equations (14 b-d) is 

@+t + Y@+ + i(A + g) @+ = i0l@,7 + i ~ @ ~  @?, 
@Tt + v@,” +i(g-A) @? = - ia@z? +if*@: @+, 

(A 1 a)  

(A1b) 

(Ale)  !qt + ”’7 + is7 = i/3( 0 0  @? + @; @+), 

where (Dl denotes the amplitude of the cos (Omnx/Z) acoustic mode and y and y’ are 
complex interaction coefficients. 

If we now examine the stability of the basic sound field with respect to a pair 
of side bands whose frequency gap is not related to the frequency of a water wave, 
we obtain equations of the forms (A 1 a)  and (A 1 b) ,  without the 7 term. The con- 
dition for stability of the basic sound field is that y equals y’; so, assuming the 
continuity of these interaction coefficients, we shall equate y and y’ in 
equations (A 1). 

Parallelling the analysis of 3 4, we deduce that equations (A 1) have solutions 
with time dependence ez‘st provided that s is a root of the characteristic 
equation 

((8 + 0- - i v p -  A2- ~ y @ 1 ( 2 ) ( ~ + S - i ~ ’ ) + 2 ~ ~ A @ O @ ~ + 2 a ~ I m ( y @ l @ ~ 2 )  = 0. 

(A 2) 
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Once again it can be inferred that if the basic sound field is strong then, irrespec- 
tive of the phases of a and /3 or the sign of A, there is at  least one root s in the 
lower half of the complex plane. However, unlike the calculations we did in 3 3, 
we need not exclude the case A = 0. The extra terms in (A 2), as compared with 
(16), make it even more difficult to obtain the neutral-stability curves explicitly. 
However, on the lower branch of the neutral-stability curves, there is a significant 
range of A in which 

and consequently the most important section of neutral-stability curve in the 
Q0, A plane is essentially independent of (PI. Of course, the relationship between 
(Do and the amplitude of the driving mechanism is no longer of the form (15), 
but it can be determined either experimentally or by .means of the theoretical 
procedures developed by Chester (1964). 

I y q 2  < A2, 
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